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В данной работе мы изучаем нильпотентность и сверхразрешимость конечных групп G, некоторые примарные под-
группы которых являются либо полупокрывающими-изолирующими, либо S-квазинормально вложенными в G. Полу-
чено обобщение некоторых известных результатов. 
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In this paper, we characterize the nilpotency and supersolvability of a finite group G by assuming some subgroups of prime 
power order are either semi cover-avoiding or S-quasinormally embeded in G. Some known results are generalized. 
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Introduction  
All groups considered in this paper are finite 

and G always denotes a finite group. The following 
notations are used in the paper: ( )pO G  is the maxi-
mal normal p-subgroup of G,  ( )GΦ  is the Frattini 
subgroup of G  and U  is the class of all supersolv-
able groups. A class of groups F  is called a forma-
tion if F  is closed under taking homomorphic im-
ages and subdirect products. A formation F  is said 
to be saturated if G∈F  whenever ( )G G/ Φ ∈ .F  
All unexplained terminology and notations are stan-
dard, as in [13], [9].  

If M  and N  are normal subgroups of G  with 
N M< ,  then we call M N/  a normal factor of G.  
A subgroup H  of G  is said to cover the normal 
factor M N/  of G  provided that HM HN= ,  and 
H  is said to avoid M N/  provided that 
H M H N∩ = ∩ .  If H  either covers or avoids 
each chief factor of G,  then H  is said to possess 
the cover-avoiding property in G.  This concept was 
introduced by Gaschütz [6] in 1962 and studied by 
many authors (see, for example, [7], [12], [22], 
[18]). In 2006, Fan, Guo and Shum [5] introduced 
the semi cover-avoiding property: a subgroup H is 
said to be semi cover-avoiding in G if there is a chief 
series 0 11 lG G G G= < < < ="  of G such that H ei-
ther covers or avoids 1j jG G −/  for every 1j l= ,..., .  
Many authors have investigated the structures of the 

group G under the assumption that some subgroups 
of G is semi cover-avoiding in G and obtained some 
interesting results (see [10], [11], [25]).  

Recall that a subgroup H of G is called S-qua-
sinormal [14] in G provided that H permutes with all 
Sylow subgroups of G. A subgroup H of a group G 
is said to be S-quasinormally embedded [3] in G if 
for  each  prime p dividing the order of H, a Sylow 
p-subgroup of H is also a Sylow p-subgroup of some 
S-quasinormal subgroup of G. By using S-quasi-
normally embedded subgroups, some authors have 
obtained many interesting results (see, for example, 
[1], [2], [15], [17]).  

The following examples show that semi cover-
avoiding subgroups and S-quasinormally embedded 
subgroups are two independent concepts.  

Example 0.1. Let 4 2G A Z= × ,  where 4A  is an 
alternating group and 2Z c=  is a cyclic group of 

order 2.  Let 4K a b= ,  be the Sylow 2-group of 

4A  generated by two elements a  and b  of order 2  
and let H a bc= , .  Then 2 4 21 Z K Z G  is a 
chief series of G. It is easy to prove that H covers 

4 2 2K Z Z/  and avoids the factors 4 2G K Z/  and 

2 1Z / ,  but H is not S-quasinormally embedded in G.  
Example 0.2. Let 5G A=  be the alternative 

group of degree 5.  Since 5A  is simple, there is no 
nontrivial semi cover-avoiding subgroup in 5A .  

МАТЕМАТИКА



Abid Mahboob, Lijun Huo, Jinghua Lu 
 

                 Проблемы физики, математики и техники, № 1 (18), 2014 58 

However, if H is any Sylow subgroup of G, then 
clearly H is S-quasinormally embedded in G.  

In this paper, we investigate the structure of a 
group G under the assumption that all maximal sub-
groups of a Sylow subgroup is either semi cover-
avoiding or S-quasinormally embedded subgroups in 
G. Some new characterizations on the structure of 
finite groups are obtained and some known results 
are generalized.  
 

1 Preliminaries  
In this section, we list some known results which 

will be useful for the proofs of our main results.  
Lemma 1.1 [20]. Let H be a p-subgroup of G 

for some prime p.  Then H is S-quasinormal in G if 
and only if ( ) ( )p

GO G N H≤ .   
Lemma 1.2. If H is an S-quasinormal subgroup 

of G, then  
(1) H is subnormal in G [14]; 
(2) GH H/  is nilpotent [4].  
Lemma 1.3 [1]. Let H be a subgroup of G. 

Then the following two statements are equivalent:  
(1) H is an S-quasinormal nilpotent subgroup of G.  
(2) The Sylow subgroups of H are S-quasi-

normal in G.  
Lemma 1.4 [11]. Let H be a subgroup of G. If 

H is semi cover-avoiding in G, then H is semi cover-
avoiding in K for every subgroup K of G with 
H K≤ .   

Lemma 1.5 [5]. Let N be a normal subgroup of 
G and let H be a subgroup of G which is semi cover-
avoiding in G.  Then HN N/  is semi cover-
avoiding in G N/  if one of the following holds:  

(1) ;N H≤   
(2) ( ) 1N H| |,| | = .   
Lemma 1.6 [3]. Suppose that U is an S-quasi-

normally embedded subgroup of G and K is a nor-
mal subgroup of G. Then  

(1) U is S-quasinormally embedded in H when-
ever U H G≤ ≤ .   

(2) UK  is S-quasinormally embedded in G  
and UK K/  is S-quasinormally embedded in G K/ .   

Lemma 1.7 [11]. Let p be a prime dividing the 
order of G  with ( 1) 1G p| |, − =  and P  be a Sylow 
p-subgroup of G.  If there is a maximal subgroup 1P  
of P  such that 1P  is semi cover-avoiding in G,  then 
G is p-solvable.  

Lemma 1.8 [21]. Let F  be a saturated forma-
tion containing all supersolvable groups and G has 
a normal subgroup E  such that G E/ ∈ .F  If E  is 
cyclic, then G∈ .F   

Lemma 1.9 [24]. Let K be an S-quasinormal 
subgroup of G and P a Sylow p-subgroup of K ,  
where p is a prime. If either ( )pP O G≤  or 1GK = ,  
then P  is S-quasinormal in G.   

Lemma 1.10 [9]. Let N be a nontrivial solvable 
normal subgroup of G.  If ( ) 1N G∩Φ = ,  then the 
Fitting subgroup ( )F N  of N  is the direct product 
of minimal normal subgroups of G contained in N.  
 

2 Main results  
Theorem 2.1. Let p  be an odd prime dividing 

the order of G  and P  a Sylow p-subgroup of G.  If 
( )GN P  is p-nilpotent and every maximal subgroup 

of P is either semi cover-avoiding or S-quasi-
normally embedded in G,  then G  is p-nilpotent.  

Proof. Suppose that the theorem is false, and 
let G be a counterexample of minimal order. Then:  

(1) ( ) 1pO G′ = .   
Suppose that ( ) 1pD O G′= ≠ .  Obviously, 

PD D/  is a Sylow p-subgroup of G D/ .  Let T D/  
be a maximal subgroup of PD D/ .  Then 1T PD=  
for some maximal subgroup 1P  of P.  By Lemmas 
1.5 and 1.6 (2), 1PD D/  is either semi cover-
avoiding or S-quasinormally embedded in G D/ .  
On the other hand, since 

( ) ( )G D GN PD D N P D D/ / = /  
by [9], we see that ( )G DN PD D/ /  is p-nilpotent. 
This shows that G D/  satisfies the hypothesis of the 
theorem. Thus G D/  is p-nilpotent. It follows that 
G is p-nilpotent, a contradiction.  

(2) If M is a proper subgroup of G with 
P M≤ ,  then M  is p-nilpotent.  

Clearly, ( )MN P  is p-nilpotent. By Lemmas 1.4 
and 1.6 (1), we see that M satisfies the hypothesis. 
The minimal choice of G implies that M is p-nil-
potent.  

(3) G PQ=  and ( ) 1pO G ≠ ,  where Q  is a Sy-
low q -subgroup of G  with q p≠ .   

Since G is not p-nilpotent, by Thompson’s 
theorem [23], there is a nonidentity characteristic 
subgroup H of P such that ( )GN H  is not p-nil-
potent. Since ( )GN P  is p-nilpotent, we may choose 
a characteristic subgroup H of P such that ( )GN H  is 
not p-nilpotent, but ( )GN K  is p-nilpotent for every 
characteristic subgroup K  of P  with H K P< ≤ .  
Since H  char  ( )GP N P ,  we have ( )GH N P ,  
and so ( ) ( )G GN P N H< .  Then by (2), we have 

( )GG N H= .  This shows that ( ) 1pH O G≤ ≠  and 
( )GN K  is p-nilpotent for any characteristic sub-

group K  of P  with ( )pO G K P< ≤  (if exists). In 
this case, using Thompson’s theorem again, we see 
that ( )pG O G/  is p-nilpotent and so G  is p-sol-
vable. Thus for any prime divisor q  of G| |  with 
q p≠ ,  there exists a Sylow q-subgroup Q  of G  
such that PQ  is a subgroup of G  (see [8, Chapter 
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6, Theorem 3.5]). If PQ G< ,  then PQ  is p-nilpo-
tent by (2). It follows from (1) that 

( ( )) ( )G p pQ C O G O G≤ = ,  
a contradiction. Hence G PQ= .   

(4) G has a unique minimal normal subgroup 
N  such that G N M= ,�  where M  is a maximal 
subgroup of G,  ( ) ( )p GN O G C N= = .   

Let N be a minimal normal subgroup of G. 
Then  by  (1)  and  (3), N is an elementary abelian 
p-group, and ( )pN O G P⊆ < .  It is easy to see that 
G N/  satisfies the hypothesis. Hence G N/  is p-nil-
potent by the choice of G. Since the class of all p-nil-
potent groups is a saturated formation, N is the 
unique minimal normal subgroup of G and 

( )N GΦ .  Consequently, G N M= �  for some 
maximal subgroup M  of G.  Clearly, ( )pN O G= .   

(5) Final contradiction.  
Since P G  and pP NM= ,  we see that 

( )N GΦ .  Hence there exists a maximal subgroup 

1P  of P such that 1N P .  If 1 1P = ,  then P is a cyclic 
subgroup of order p. It follows that ( ) ( )G GN P C P=  
since ( )GN P  is p-nilpotent. Hence G  is p-nilpotent 
by Burnside Theorem, a contradiction. Hence we 
assume that 1 1P ≠ .   

Assume that 1P  is semi cover-avoiding in G.  
Then there is a chief factor series 

0 11 lG G G G= < < < ="  
such that for every 1j l= ,..., ,  1P  either covers or 
avoids 1j jG G −/ .  In particular, 1P  covers or avoids 

1 1G / ,  which means that 1 1 1G P P=  or 1 1 1G P∩ = .  
By (3), 1G N= .  If 1 1NP P= ,  then 1N P≤ ,  a contra-
diction. Hence 1 1N P∩ =  and so N p| |= .  It fol-
lows that ( ) ( )P N P M N P M= ∩ = × ∩ ,  which 
contradicts (4).  

Now assume that G has an S-quasinormal sub-
group K such that 1P  is a Sylow p-subgroup of K .  
If 1GK ≠ ,  then GN K K≤ ≤ ,  and thereby 1N P≤ ,  a 
contradiction. Therefore 1GK = .  Then by Lemmas 
1.2 (2) and 1.3, 1P  is S-quasinormal in G. Thus 1P  is 
subnormal in G by Lemma 1.2(1). By [9], we have 
that 1 ( )pP O G N P≤ = ≤ .  Since 1P  is a maximal 
subgroup of P, 1P N= ,  a contradiction also. The final 
contradiction completes the proof of the theorem.  

Corollary 2.2. Let H be a normal subgroup of 
G  such that G H/  is p-nilpotent, where p is a 
prime dividing the order of G. If there exists a Sylow 
p-subgroup P of H such that ( )GN P  is either semi 
cover-avoiding or S-quasinormally embedded in G, 
then G is p-nilpotent.  

Proof. By Lemmas 1.4 and 1.6 (1) and Theo-
rem 2.1, H  is p-nilpotent. Let pH ′  be a normal Hall 
p′ -subgroup of H .  Assume that 1pH ′ ≠ .  Then 

clearly, ( ) ( )p pG H H H G H′ ′/ / / ≅ /  is p-nilpotent. 
Applying Lemmas 1.5 and 1.6 (2) and [9], we see 
that pG H ′/  satisfies the hypothesis. Hence by in-
duction on G| |,  pG H ′/  is p-nilpotent. It follows 
that G is p-nilpotent. We may, therefore, assume 

1pH ′ = .  Then H P=  is a p-group. In this case, 
( )GG N P=  is p-nilpotent.  

Theorem 2.3. Let p  be the smallest prime di-
viding G| |  and P  be a Sylow p-subgroup of G.  If 
every maximal subgroup of P is either semi cover-
avoiding or S-quasinormally embedded in G,  then 
G is p-nilpotent.   

Proof. Suppose that the theorem is false and let 
G be a counterexample of minimal order. We prove 
it via the following steps.  

(1) ( ) 1pO G′ = .   
If ( ) 1pO G′ ≠ ,  then ( ) ( )p pPO G O G′ ′/  is a Sylow 

p-subgroup of ( )pG O G′/ .  Suppose that ( )pM O G′/  
is a maximal subgroup of ( ) ( )p pPO G O G′ ′/ .  Then 
there exists a maximal subgroup 1P  of P  such that 

1 ( )pM PO G′= .  By the hypothesis, 1P  is either semi 
cover-avoiding or S-quasinormally embedded in G.  
Then 1( ) ( ) ( )p p pM O G PO G O G′ ′ ′/ = /  is either semi 
cover-avoiding or S -quasinormally embedded in 

( )pG O G′/  by Lemmas 1.5 and 1.6(2). The minimal 
choice of G  implies that ( )pG O G′/  is p-nilpotent, 
and so G is p-nilpotent, a contradiction. Therefore, 
we have ( ) 1pO G′ = .   

(2) ( ) 1pO G ≠ .   
If all maximal subgroups of P are S-quasi-

normally embedded in G,  then G is p-nilpotent by 
[1]. Hence there exists at least a maximal subgroup 

1P  of P  which is semi cover-avoiding in G.  By 
Lemma 1.7, G is p-solvable. It follows from (1) that 

( ) 1pO G ≠ .   
(3) G is solvable.  
If G is not solvable, then 2p =  by Feit-

Thompson’s theorem. Suppose that 2 ( )M O G/  is a 
maximal subgroup of 2 ( )P O G/ .  Then M is a maxi-
mal subgroup of P.  By Lemmas 1.5 and 1.6(2), 

2 ( )M O G/  is either semi cover-avoiding or S-quasi-
normally embedded in 2 ( )G O G/ .  Therefore 

2 ( )G O G/  satisfies the hypothesis. The minimal 
choice of G  implies that 2 ( )G O G/  is 2 -nilpotent, 
and so 2 ( )G O G/  is solvable. It follows that G  is 
solvable, a contradiction. Thus (3) holds.  
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(4) G has a unique minimal normal subgroup 
( )pN O G= ,  G NM= ,  where M  is p-nilpotent and 

N p| |> .   
Let N  be a minimal normal subgroup of G.  

By (3), N  is an elementary abelian subgroup. Since 
( ) 1pO G′ = ,  ( )pN O G≤ .  It is easy to see that G N/  

satisfies the hypothesis. The choice of G  implies 
that G N/  is p-nilpotent.  Since the class   of  all  
p-nilpotent groups is a saturated formation, N  is a 
unique minimal normal subgroup of G  and 

( )N GΦ .  This implies that G N M= ,�  
( )pN O G=  and M is p-nilpotent. If N p| |= ,  then 

( )GG C N/  is an abelian group exponent 1p − .  It 
follows that ( )N Z G≤  and so G is p-nilpotent, a 
contradiction.  

(5) Final contradiction.  
Clearly, ( )P N P M= ∩  and P M P∩ < .  

Thus, there exists a maximal subgroup 1P  of P  
such that 1P  containing P M∩ .  Then 1P NP=  and 

1 1P ≠ .  By the hypothesis, 1P  is either semi cover-
avoiding or S-quasinormally embedded in G.  Sup-
pose that 1P  is semi cover-avoiding in G.  Then 1P  
covers or avoids 1N / .  If 1 1P N P= ,  then 1N P≤ ,  a 
contradiction. Hence 1 1P N∩ = .  Consequently 

N p| |= ,  a contradiction. Now assume  that  1P  is 
S-quasinormally embedded in G.  Then there exists 
an S-quasinormal subgroup K  such that 1P  is a Sy-
low p-subgroup of K .  If 1GK ≠ ,  then GN K K≤ ≤  
by (4) and so 1N P≤ .  This contradiction shows that 

1GK = .  Then by Lemmas 1.2 (2) and  1.3, 1P   is  
S-quasinormal in G.  It follows from Lemma 1.2 (1) 
that 1P  is subnormal in G.  Now by [9], we have that 

1 ( )pP O G N≤ = .  The final contradiction completes 
the proof.  

Corollary 2.4. Let p be the smallest prime di-
viding G| |  and H a normal subgroup of G such that 
G H/  is p-nilpotent. If there exists a Sylow p-sub-
group P of H such that every maximal subgroup of P 
is either semi cover-avoiding or S-quasinormally 
embedded in G,  then G  is p-nilpotent.   

Proof. By Lemmas 1.4 and 1.6 (1), every 
maximal subgroup of P is either semi cover-
avoiding or S-quasinormally embedded in H .  Ap-
plying Theorem 2.3, H  is p-nilpotent. Let pH ′  be 
the normal p-complement of H .  Then pH ′  is nor-
mal in G.  By using the same argument as in the 
proof of Corollary 2.2, we may assume 1pH ′ =  and 
so H P=  is a p-group. Since G H/  is p-nilpotent, 
we may let K H/  be the normal p-complement of 
G H/ .  By Schur-Zassenhaus’s theorem, there exists 

a Hall p′ -subgroup pK ′  of K  such that pK HK ′= .  
By Theorem 2.3 again, we see that K  is p-nilpotent. 
Hence pK H K ′= × .  In this case, pK ′  is a normal  
p-complement of G,  thus G  is p-nilpotent.  

Corollary 2.5. Suppose that every maximal 
subgroup of any Sylow subgroup of G is either semi 
cover-avoiding or S-quasinormally embedded in G.  
Then G is a Sylow tower group of supersolvable type. 

Corollary 2.6 [11, Theorem 3.2]. Let p be the 
smallest prime dividing the order of G and let P be a 
Sylow p-subgroup of G.  If P  is cyclic or every 
maximal subgroup of P is semi cover-avoiding in G,  
then G  is p-nilpotent.  

Proof. If P is a cyclic group, then by [19], G is 
p-nilpotent. Hence we assume that every maximal 
subgroup of P is semi cover-avoiding in G. By Cor-
ollary 2.3, G is p-nilpotent.  

Theorem 2.7. Let F  be a saturated formation 
containing .U  Then G∈F  if and only if there is a 
normal subgroup H  of G  such that G H F/ ∈  and 
every maximal subgroup of the Sylow subgroup of H 
is either semi cover-avoiding or S-quasinormally 
embedded in G.  

Proof. The necessity is obvious. We only need 
to prove the sufficiency. Assume that it is false and 
let G be a counterexample of minimal order. Then:  

(1) There is a normal Sylow subgroup P of G 
contained in H.  

By Corollary 2.5, H has a Sylow tower of su-
persolvable type. Let p be the largest prime divisor 
of H| |  and let P  be a Sylow p -subgroup of H .  
Then P  is normal in H .  Since P char H G,  we 
have that P G.   

(2) Let N be a minimal normal subgroup of G 
contained in P.  Then G N/ ∈F  and N P= .   

It is easy to see that  
( ) ( )G N H N G H/ / / ≅ / ∈ .F  

Let 1P N/  be a maximal subgroup of P N/ .  By 
Lemmas 1.5 and 1.6, 1P N/  is either semi cover-
avoiding property or S-quasinormally embedded in 
G N/ .  Let Q  be a Sylow q-subgroup of H ,  where 
q p≠ ,  and 1M N/  be a maximal subgroup of the 
Sylow q -subgroup QN N/  of H N/ .  It is clear 
that 1 1M Q N=  for some maximal subgroup 1Q  of 
Q.  By the hypothesis, 1Q  is either semi cover-
avoiding or S-quasinormally embedded in G. Hence 

1M N/  is either semi cover-avoiding or S-quasi-
normally embedded in G N/  by Lemmas 1.5 and 
1.6. Thus G N/  satisfies the hypothesis of the theo-
rem. The choice of G  implies that G N/ ∈ .F  
Since F  is a saturated formation, N  is the unique 
minimal normal subgroup of G contained in P, 

( ) 1PΦ =  and ( )N GΦ .  It follows from Lemma 
1.10 that ( )P F P N= = .   
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(3) Final contradiction.  
Suppose that every maximal subgroup of P  is 

S-quasinormally embedded in G.  Then by [1], 
G∈ ,F  a contradiction. So we may assume that 
there is some maximal subgroup 1P  of P  such that 

1P  is semi cover-avoiding in G.  Then there exists a 
chief series of G   

0 11 lG G G G= < < < ="  
such that 1P  covers or avoids every factor 1j jG G −/ ,  

1j l= ,..., .  Since N=P is a minimal normal in G, there 
exists j such that jG N N∩ =  and 1 1jG N− ∩ = .  If 

1P  covers 1j jG G −/ ,  then 1 1 1j jPG PG −= .  It follows 
that 1 1 1( ) ( )j jP G N P G N−∩ = ∩ ,  that is, 1 1P N P= ,  a 
contradiction. If 1P  avoids 1j jG G −/ ,  then 

1 1 1j jP G P G −∩ = ∩  and so 

1 1 1j jP G N P G N−∩ ∩ = ∩ ∩ .  
This means that 1 1P =  and so N p| |= .  Then by (2) 
and Lemma 1.8, G∈ .F  This contradiction com-
pletes the proof.  

Corollary 2.8 [16, Theorem 3.6]. Let F  be a 
saturated formation containing .U  If there is a nor-
mal Hall subgroup H  of G  such that G H/ ∈F  
and every maximal subgroup of any Sylow subgroup 
of H  has the semi cover-avoiding property in G,  
then G∈ .F   

Theorem 2.9. Let F  be a saturated formation 
containing U  and H  be a solvable normal sub-
group of G  such that G H/ ∈ .F  If every maximal 
subgroup of any Sylow subgroup of ( )F H  is either 
semi cover-avoiding or S-quasinormally embedded 
in G,  then G∈ .F   

Proof. Assume that the theorem is false and let 
( )G H,  be a counterexample with G H| | + | |  is 
minimal.  

Firstly, assume that ( ) 1H G∩Φ ≠ .  Let Q  be a 
Sylow q -subgroup of H ,  where q  is a prime divi-
sor of H| | .  Since Q char H G,  we have that 
Q G  and so ( ) ( )G Q H Q G H/ / / ≅ / ∈ .F  By 
[13, Chapter 3, Theorem 3.5], ( ) ( )F H Q F H Q/ = / .  
It is easy to see that ( )G Q H Q/ , /  satisfies the hy-
pothesis of the theorem. Hence G Q/ ∈F  by mini-
mal choice of G.  Since ( )Q G≤ Φ  and F  is a satu-
rated formation, we have that G∈ .F  This contra-
diction shows that ( ) 1H G∩Φ = .  By Lemma 1.10, 

( )F H  is the direct product of minimal normal sub-
groups of G  contained in H .  Let P  be the Sylow 
p-subgroup of ( )F H  and assume that 

1 2 tP N N N= × × × ,"  where 1 tN N, ...,  are minimal 
normal subgroups of G.  We now prove that 

iN p| |=  for each {1 }i t∈ ,..., .  If P  is cyclic, then it 

is clear. Assume that P  is not cyclic and there exists 
some iN  such that iN p| |> .  Without loss of gener-
ality, we may assume that 1i = .  Clearly, there exists 
a maximal subgroup M  of G  such that 1G N M=  
and 1 1N M∩ = .  Let pM  be a Sylow p-subgroup of 
M .  Then 1p p pG N M PM= =  is a Sylow p-sub-

group of G.  Take a maximal subgroup pG∗  of pG  

containing pM  and let 1 pP G P∗= ∩ .  Then  

1( )p p p p p pG G PM G P M PM∗ ∗ ∗= ∩ = ∩ =  
and  

1 1 2

1 2 1 2

( )

( )
p t

p t t

P G N N N

G N N N N N N

∗

∗ ∗

= ∩ × × × =

= ∩ = ,

"

" "
 

where 1 1pN G N∗ ∗= ∩ .  Since 

1 1 1p p p p pN G N N G G G G p∗ ∗ ∗ ∗| : ∩ |=| : |=| : |= ,  

1 1pN G N∗ ∗= ∩  is a maximal subgroup of 1N .  This 

implies that 1 1 2 tP N N N∗= "  is a maximal subgroup 
of P. By the hypothesis, 1P  is semi cover-avoiding or 
S-quasinormal embedded in G. Let 2 tT N N= × × ."   

Assume that 1P  is semi cover-avoiding in G.  
Then by Lemma 1.5, 1P T/  is semi cover-avoiding 
in G T/ .  Let  

1 11 nT G T G G T G= / = / ="  
be the chief series of G T/  such that 1P  either cov-
ers or avoids every factor of this series. Let i  be the 
smallest index in {1 }n, ...,  such that 1P T/  covers 

1i iG G+ / .  Then it is easy to see that 1iG P T∩ =  and 

1 1 1i i iG G P G N ∗
+ ≤ = .  

It follows that 1 1 1( )i i iG G N G∗
+ += ∩ ,  and so 

1 1 1iN G∗
+∩ > .  But since 1N  is a minimal normal 

subgroup of G,  we obtain that 1 1iN G +≤  and 

1 1iN G∩ = .  Therefore, 

1 1 1 1 1i i iN G G N G N∗ ∗
+ +| |=| / |=| ∩ |=| | .  

This contradiction shows that 1P T/  avoids every 

chief factor 1i iG G+ / ,  for 0 1i n= , ,..., .  This implies 
that 1 1P T/ =  and 1N p| |= ,  a contradiction. Now 
we assume that there is an S-quasinormal subgroup 
K  of G  such that 1P  is a Sylow p-subgroup of K .  
Clearly, 1 ( )pP O G≤ .  Hence by Lemma 1.9, 1P   is  
S-quasinormal in G.  It follows from Lemma 1.1 that 

1( ) ( )p
GO G N P≤ .  Since pG∗  and P  are both normal 

in pG ,  we have that 1 p pP G P G∗= ∩ .  Hence 

1( ) ( )p
p GG G O G N P= ≤ .  Consequently, 1P G.  

Since 1 1N P ,  we have 1 1 1P N∩ = .  This induces 
that 1N p| |= ,  a contradiction again.  
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The above discussion shows that 
1 2( ) nF H R R R= × × × ,"  where iR  is the minimal 

normal subgroup of G  of prime order for all 
1i n= ,..., .  Since ( )G iG C R/  is isomorphic to some 

subgroup of ( )iAut R ,  ( )G iG C R/  is abelian. It fol-

lows that 
1

( ( )) ( )n
G G ii

G C F G G C R
=

/ = /∩  is abelian 

and hence ( ( ))GG C F G/ ∈ .F  Then since 
G H/ ∈ ,F  we see that  

( ( ( ))) ( ( ))G HG H C F H G C F H/ ∩ = / ∈ .F  
Since ( )F H  is abelian, ( ) ( ( ))HF H C F H≤ .  On the 
other hand, since H  is solvable, 

( ( )) ( )HC F H F H≤ .  
Thus ( ) ( ( ))HF H C F H=  and so ( )G F H/ ∈ .F  
Now by Theorem 2.7, we obtain that G∈ ,F  a con-
tradiction. This completes the proof.  
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